聊天机器人有两种变体:基于规则的和自学习的。
i)在基于检索的模型中,聊天机器人使用一些启发式方法从预定义的响应库中选择回应。这种聊天机器人使用对话的消息和上下文从预定义的机器人消息列表中选择最佳回答。上下文可以包括对话树(dialog tree)中的当前位置,对话中所有的先前消息和先前保存的变量(例如,用户名)。用于选择回应的启发式方法可以以许多不同的方式设计,从基于规则的if-else条件逻辑到机器学习分类器都可以。
ii)生成式的聊天机器人可以生成答案,而不是总是回答答案集合中的答案之一。这使得它们更加智能,因为它们从查询中逐字逐句地提取,然后生成答案。
具有scikit库和NLTK的实践知识。但即使是NLP的新手,也可以先阅读本文,然后再参考资源。
专注于人类语言和计算机之间交互的研究领域,称为自然语言处理(Natural Language Processing)。它是计算机科学,人工智能和计算语言学的交集。NLP是一种让计算机以一种聪明而有用的方式分析、理解并从人类语言中获得意义的方法。通过利用NLP,开发人员可以整理和构建知识,以执行自动摘要,翻译,命名实体识别,关系提取,情感分析,语音识别和主题分割等任务。
NLTK(Natural Language Toolkit)是构建用于处理人类语言数据的Python程序的领先平台。它为超过50个语料库和词汇资源(如WordNet)提供了易于使用的接口,还提供了一套用于分类,标记化,词干化,标记,解析和语义推理的文本处理库,以及工业级NLP库的包装器。
NLTK被称为“用于教学和工作的精彩工具,使用Python的计算语言学”,以及“用于自然语言的神奇的库”(建议阅读书:Natural Language Processing with Python)。
文本数据的主要问题是它是文本格式(字符串)。但是,机器学习算法需要某种数字特征向量才能执行任务。因此,在我们开始任何NLP项目之前,我们需要对其进行预处理,使其适合于工作。文本预处理包括:
NLTK数据包包括一个预训练的英语Punkt标记器。
在初始预处理阶段之后,我们需要将文本转换为有意义的数字向量(或数组)。词袋(Bag of Words)是描述文档中单词出现的文本表示形式。它包括:
为什么它被称为单词的“ 袋”?这是因为关于文档中单词的顺序或结构的任何信息都被丢弃,并且模型仅涉及已知单词是否出现在文档中,而不涉及出现在文档中的位置。
它的原理是,如果文档具有相似的内容,则它们是相似的。此外,我们可以仅从其内容中了解文档的含义。
例如,如果我们的字典包含单词{Learning,is,the,not,great},并且我们想要对文本“Learning is great”进行矢量化,我们将得到以下向量:(1, 1, 0, 0, 1)。
词袋方法的一个问题是高频率的单词在文档中开始占主导地位(例如,得分较高),但它们可能不包含那么多的“信息内容”。此外,与较短的文档相比,它给更长的文档更大权重。
解决这个的一种方法是通过它们在所有文档中出现的频率来重新调整单词频率,使得在所有文档中频繁出现的频繁单词(如“the”)的分数受到惩罚。这种评分方法称为词频逆文本频率指数(Term Frequency-Inverse Document Frequency),简称TF-IDF,其中:
Term Frequency:是当前文档中单词频率的得分。
TF = (Number of times term t appears in a document)/(Number of terms in the document)
IDF = 1+log(N/n), where, N is the number of documents and n is the number of documents a term t has appeared in.
TF-IDF是一种在向量空间中得到两个实值向量的应用于文本的变换。变换后我们可以通过获取它们的点积并将其除以它们范数的乘积来获得任何一对矢量的余弦相似度。得到向量夹角的余弦值。余弦相似度是两个非零向量之间相似性的度量。使用下面公式,我们可以求出任意两个文档d1和d2的相似度。
Cosine Similarity (d1, d2) = Dot product(d1, d2) / ||d1|| * ||d2||
import nltk
import numpy as np
import random
import string # to process standard python strings
对于我们的示例,我们将使用维基百科页面chatbot作为我们的语料库(https://en.wikipedia.org/wiki/Chatbot)。复制页面中的内容并将其放在名为“chatbot.txt”的文本文件中。当然,你可以使用你选择的任何语料库。
我们将读入corpus.txt文件并将整个语料库转换为句子列表和单词列表以供进一步预处理
f=open('chatbot.txt','r',errors = 'ignore')
raw=f.read()
raw=raw.lower()# converts to lowercase
nltk.download('punkt') # first-time use only
nltk.download('wordnet') # first-time use only
sent_tokens = nltk.sent_tokenize(raw)# converts to list of sentences
word_tokens = nltk.word_tokenize(raw)# converts to list of words
sent_tokens[:2]
['a chatbot (also known as a talkbot, chatterbot, bot, im bot, interactive agent, or artificial conversational entity) is a computer program or an artificial intelligence which conducts a conversation via auditory or textual methods.',
'such programs are often designed to convincingly simulate how a human would behave as a conversational partner, thereby passing the turing test.']
word_tokens[:2]
['a', 'chatbot', '(', 'also', 'known']
我们现在将定义一个名为LemTokens的函数,它将token作为输入并返回标准化的token。
lemmer = nltk.stem.WordNetLemmatizer()
#WordNet is a semantically-oriented dictionary of English included in NLTK.
def LemTokens(tokens):
return [lemmer.lemmatize(token) for token in tokens]
remove_punct_dict = dict((ord(punct), None) for punct in string.punctuation)
def LemNormalize(text):
return LemTokens(nltk.word_tokenize(text.lower().translate(remove_punct_dict)))
接下来,我们将为机器人定义一个问候函数,即如果用户的输入是问候语,机器人将返回问候语的响应。ELIZA使用简单的关键字匹配问候语。我们这里的实现理念与此相同。
GREETING_INPUTS = ("hello", "hi", "greetings", "sup", "what's up","hey",)
GREETING_RESPONSES = ["hi", "hey", "*nods*", "hi there", "hello", "I am glad! You are talking to me"]
def greeting(sentence):
for word in sentence.split():
if word.lower() in GREETING_INPUTS:
return random.choice(GREETING_RESPONSES)
为了从我们的机器人生成输入问题的响应,我们使用文档相似度的概念。所以我们首先导入必要的模块。
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
def response(user_response):
robo_response=''
TfidfVec = TfidfVectorizer(tokenizer=LemNormalize, stop_words='english')
tfidf = TfidfVec.fit_transform(sent_tokens)
vals = cosine_similarity(tfidf[-1], tfidf)
idx=vals.argsort()[0][-2]
flat = vals.flatten()
flat.sort()
req_tfidf = flat[-2]
if(req_tfidf==0):
robo_response=robo_response+"I am sorry! I don't understand you"
return robo_response
else:
robo_response = robo_response+sent_tokens[idx]
return robo_response
flag=True
print("ROBO: My name is Robo. I will answer your queries about Chatbots. If you want to exit, type Bye!")
while(flag==True):
user_response = input()
user_response=user_response.lower()
if(user_response!='bye'):
if(user_response=='thanks' or user_response=='thank you' ):
flag=False
print("ROBO: You are welcome..")
else:
if(greeting(user_response)!=None):
print("ROBO: "+greeting(user_response))
else:
sent_tokens.append(user_response)
word_tokens=word_tokens+nltk.word_tokenize(user_response)
final_words=list(set(word_tokens))
print("ROBO: ",end="")
print(response(user_response))
sent_tokens.remove(user_response)
else:
flag=False
print("ROBO: Bye! take care..")
这并不算太糟糕。即使聊天机器人无法对某些问题给出满意的答案,但其他人的表现还不错。
虽然它是一个十分简单的聊天机器人,几乎没有任何认知技能,但它是入门NLP并了解聊天机器人的好方法。