什么是聚类算法?聚类是一种机器学习技术,它涉及到数据点的分组。给定一组数据点,我们可以使用聚类算法将每个数据点划分为一个特定的组。理论上,同一组中的数据点应该具有相似的属性和/或特征,而不同组中的数据点应该具有高度不同的属性和/或特征。聚类是一种无监督学习的方法,是许多领域中常用的统计数据分析技术。
在数据科学中,我们可以使用聚类分析从我们的数据中获得一些有价值的见解。
聚类算法有哪些呢?在这篇文章中,我们将研究5种流行的聚类算法以及它们的优缺点。
K-MEANS聚类算法
K-Means聚类算法可能是大家最熟悉的聚类算法。它出现在很多介绍性的数据科学和机器学习课程中。在代码中很容易理解和实现!请看下面的图表。
K-Means聚类
2.每个数据点通过计算点和每个组中心之间的距离进行分类,然后将这个点分类为最接近它的组。
3.基于这些分类点,我们通过取组中所有向量的均值来重新计算组中心。
4.对一组迭代重复这些步骤。你还可以选择随机初始化组中心几次,然后选择那些看起来对它提供了最好结果的来运行。
K-Means聚类算法的优势在于它的速度非常快,因为我们所做的只是计算点和群中心之间的距离;它有一个线性复杂度O(n)。
另一方面,K-Means也有几个缺点。首先,你必须选择有多少组/类。这并不是不重要的事,理想情况下,我们希望它能帮我们解决这些问题,因为它的关键在于从数据中获得一些启示。K-Means也从随机选择的聚类中心开始,因此在不同的算法运行中可能产生不同的聚类结果。因此,结果可能是不可重复的,并且缺乏一致性。其他聚类方法更加一致。
K-Medians是另一种与K-Means有关的聚类算法,除了使用均值的中间值来重新计算组中心点以外,这种方法对离群值的敏感度较低(因为使用中值),但对于较大的数据集来说,它要慢得多,因为在计算中值向量时,每次迭代都需要进行排序。
均值偏移聚类算法
均值偏移(Mean shift)聚类算法是一种基于滑动窗口(sliding-window)的算法,它试图找到密集的数据点。而且,它还是一种基于中心的算法,它的目标是定位每一组群/类的中心点,通过更新中心点的候选点来实现滑动窗口中的点的平均值。这些候选窗口在后期处理阶段被过滤,以消除几乎重复的部分,形成最后一组中心点及其对应的组。请看下面的图表。
单滑动窗口的均值偏移聚类
均值偏移聚类的整个过程
与K-Means聚类相比,均值偏移不需要选择聚类的数量,因为它会自动地发现这一点。这是一个巨大的优势。聚类中心收敛于最大密度点的事实也是非常可取的,因为它非常直观地理解并适合于一种自然数据驱动。缺点是选择窗口大小/半径r是非常关键的,所以不能疏忽。
DBSCAN聚类算法
DBSCAN(Density-Based Spatial Clustering of Applications with Noise)是一个比较有代表性的基于密度的聚类算法,类似于均值转移聚类算法,但它有几个显著的优点。
DBSCAN笑脸聚类
DBSCAN比其他聚类算法有一些优势。首先,它不需要一个预设定的聚类数量。它还将异常值识别为噪声,而不像均值偏移聚类算法,即使数据点非常不同,它也会将它们放入一个聚类中。此外,它还能很好地找到任意大小和任意形状的聚类。
DBSCAN的主要缺点是,当聚类具有不同的密度时,它的性能不像其他聚类算法那样好。这是因为当密度变化时,距离阈值ε和识别邻近点的minPoints的设置会随着聚类的不同而变化。这种缺点也会出现在非常高维的数据中,因为距离阈值ε变得难以估计。
使用高斯混合模型(GMM)的期望最大化(EM)聚类
K-Means的一个主要缺点是它对聚类中心的平均值的使用很简单幼稚。我们可以通过看下面的图片来了解为什么这不是最好的方法。在左边看起来很明显的是,有两个圆形的聚类,不同的半径以相同的平均值为中心。K-Means无法处理,因为聚类的均值非常接近。在聚类不是循环的情况下,K-Means也会失败,这也是使用均值作为聚类中心的结果。
K-Means的两个失败案例
高斯混合模型(GMMs)比K-Means更具灵活性。使用高斯混合模型,我们可以假设数据点是高斯分布的;比起说它们是循环的,这是一个不那么严格的假设。这样,我们就有两个参数来描述聚类的形状:平均值和标准差!以二维的例子为例,这意味着聚类可以采用任何形式的椭圆形状(因为在x和y方向上都有标准差)。因此,每个高斯分布可归属于一个单独的聚类。
为了找到每个聚类的高斯分布的参数(例如平均值和标准差)我们将使用一种叫做期望最大化(EM)的优化算法。看看下面的图表,就可以看到高斯混合模型是被拟合到聚类上的。然后,我们可以继续进行期望的过程——使用高斯混合模型实现最大化聚类。
使用高斯混合模型来期望最大化聚类
使用高斯混合模型有两个关键的优势。首先,高斯混合模型在聚类协方差方面比K-Means要灵活得多;根据标准差参数,聚类可以采用任何椭圆形状,而不是局限于圆形。K-Means实际上是高斯混合模型的一个特例,每个聚类在所有维度上的协方差都接近0。其次,根据高斯混合模型的使用概率,每个数据点可以有多个聚类。因此,如果一个数据点位于两个重叠的聚类的中间,通过说X%属于1类,而y%属于2类,我们可以简单地定义它的类。
层次聚类算法
层次聚类算法实际上分为两类:自上而下或自下而上。自下而上的算法在一开始就将每个数据点视为一个单一的聚类,然后依次合并(或聚集)类,直到所有类合并成一个包含所有数据点的单一聚类。因此,自下而上的层次聚类称为合成聚类或HAC。聚类的层次结构用一棵树(或树状图)表示。树的根是收集所有样本的唯一聚类,而叶子是只有一个样本的聚类。在继续学习算法步骤之前,先查看下面的图表。
合成聚类
层次聚类算法不要求我们指定聚类的数量,我们甚至可以选择哪个聚类看起来最好。此外,该算法对距离度量的选择不敏感;
它们的工作方式都很好,而对于其他聚类算法,距离度量的选择是至关重要的。层次聚类方法的一个特别好的用例是,当底层数据具有层次结构时,你可以恢复层次结构;而其他的聚类算法无法做到这一点。层次聚类的优点是以低效率为代价的,因为它具有O(n³)的时间复杂度,与K-Means和高斯混合模型的线性复杂度不同。