第一项研究发表在《光:科学与应用》(Light: Science & Applications)杂志上。研究人员利用深度学习方法,创造出了血液、子宫颈抹片检查和其他薄层组织样本等生物样本的图像。
研究证明神经网络技术比通常用于制作全息图的方法更容易并且更快速,这通常需要大量的物理测量和计算输入。
在第二项研究中,研究小组应用了他们的深度学习框架来提高显微图像的分辨率和质量,这可以帮助医生在血液或组织样本中检测出非常小的异常。
当全息图被渲染的过程中会丢失信息,这有时会使“artifacts”出现在图像中;一些看起来很重要的东西(比如一个黑点,其实只是一个影子,但可以解释为癌变)。这也会发生在放射扫描时,特别当病人在扫描时移动。
然而,加州大学洛杉矶分校团队的深度学习AI成功地解决了这个问题:只要训练得当,神经网络就可以将真实图像的空间特征与任何干扰(通常是由光线造成的)分离开来。
人工神经网络层允许深度学习算法自动分析数据。这项技术已经证明了它适用于改善实时语音翻译、视频字幕以及其他许多以前遗留的任务——人可能不会像算法那样快速或准确地完成任务。
由于机器学习可以比人类更快地处理大量的信息,因此,这项技术已经应用的一个领域就是医学。这些算法已经在诊断放射学中得到了应用,他们被用来阅读x射线,甚至还能捕捉到被人类医生忽略的癌症。
当我们努力开发工具以帮助将这些观点“生活化”时,全息图像重建将是不可或缺的 - 特别是如果他们能够修复和恢复图像。
这项研究的领头人Aydogan Ozca认为,除了极具潜力的深度学习之外,还需要进一步研究全息图技术,这将为成像技术带来新的可能性。在加州大学洛杉矶分校的一份新闻稿中,Ozca说这项技术甚至可以创造出全新的、连贯的成像系统。未来的成像系统甚至可以利用加州大学洛杉矶分校的研究成果,将其他部分电磁频谱纳入科技,比如x射线和可见光波段。
如果未来像我们在过去的40到50年里看到的科幻小说中那样,全息图将发挥重要作用,但是加州大学洛杉矶分校的研究不只是为全息图提供神奇的未来;特为不可思议的技术提供了实际应用。