RStudio发布新接口,在R语言中使用TensorFlow

2018年02月20日 由 yuxiangyu 发表 212558 0
R语言是一种自由软件编程语言与操作环境,主要用于统计分析、绘图、数据挖掘、机器学习等。今日RStudio发布博文称,已为TensorFlow创建了R接口,使R用户能方便的使用TensorFlow

在过去的一年中,我们一直在努力为Google的开源机器学习框架TensorFlow创建R接口。我们之所以如此关注它,最重要的是TensorFlow为深度学习应用提供了最先进的基础设施。

在谷歌开源后的这两年里,TensorFlow迅速成为机器学习从业者和研究人员的首选框架。周六,我们在JJ Allaire的主题演讲中正式宣布了我们关于TensorFlow的工作:

[video width="1280" height="720" mp4="http://imgcdn.atyun.com/2018/02/Machine-Learning-with-R-and-TensorFlow.mp4"][/video]

在主题演讲中,JJ不仅描述了我们在TensorFlow上所做的工作,而且还深入地讨论了深度学习(深度学习是什么,它是如何工作的,以及它在未来几年可能与R的用户相关的地方,视频搬运自youtube)。

新的包和工具


TensorFlow的R接口由一套R包组成,它们为TensorFlow提供了各种接口,用于不同的任务和抽象层次,包括:

  • keras - 神经网络的高级接口,主要用于快速实验。

  • tfestimators - 通用模型类型的实现,如回归器和分类器。

  • tensorflow - 向TensorFlow计算图的底层接口。

  • tfdatasets - TensorFlow模型的可扩展输入管道。


除了TensorFlow的各种R接口之外,还有一些工具有助于训练的工作流程,包括在RStudio IDE中对训练指标的实时反馈:


RStudio发布新接口,在R语言中使用TensorFlow

tfruns包提供了跟踪和管理TensorFlow训练时的运行和实验的工具:

RStudio发布新接口,在R语言中使用TensorFlow

访问GPU


训练CNN或RNN可能非常耗费算力,而能够使用高端的英伟达GPU可以缩短训练时间。但是,大多数用户在本地没有这种硬件。为了解决这个问题,我们提供了多种在云中使用GPU的方法,包括:

  • cloudml包,一个接到谷歌的托管机器学习引擎的R接口。

  • 带有Tensorflow-GPU的RStudio服务器(一个Amazon EC2映像,配置了NVIDIA CUDA驱动程序、TensorFlow、R接口的TensorFlow以及RStudio服务器)。

  • 使用Paperspace服务设置Ubuntu 16.04云桌面和GPU的详细说明。


如果你已经拥有所需的英伟达GPU硬件,还可以在本地工作站上设置 GPU。

设置说明:https://tensorflow.rstudio.com/tools/local_gpu.html



学习资源


TensorFlow for R:https://tensorflow.rstudio.com/


Deep Learning with R:https://www.amazon.com/Deep-Learning-R-Francois-Chollet/dp/161729554X

Deep Learning with Keras Cheatsheet:https://github.com/rstudio/cheatsheets/raw/master/keras.pdf

Gallery:https://tensorflow.rstudio.com/gallery/

Examples:https://tensorflow.rstudio.com/learn/examples.html

 
欢迎关注ATYUN官方公众号
商务合作及内容投稿请联系邮箱:bd@atyun.com
评论 登录
写评论取消
回复取消